
C++ Toolkit Book The Connection Library

9-1

9. The Connection Library
Created: April 1, 2003
Updated: September 16, 2003

Summary
Connection Library [Library xconnect: include | src]

Includes a generic socket interface (SOCK), connection object (CONN), and specialized connector

constructors (for sockets, files, HTTP and services), to be used as engines for connections. Also,
provides access to load-balancing daemon and NCBI named service dispatching facilities.

While the core of the Connection Library is written in C and has an underlying C interface, the
analogous C++ interfaces have been built to provide objects that work smoothly with the rest of the
Toolkit.

i. Debugging Tools and Troubleshooting Documentation

ii. C++ Interfaces to the Library

• CONN-Based C++ Streams and Stream Buffers ncbi_conn_stream[.hpp | .cpp],
ncbi_conn_streambuf[.hpp | .cpp]

• Diagnostic Handler for E-Mailing Logs email_diag_handler[.hpp | .cpp]

• Using the CONNECT Library with the C++ Toolkit ncbi_core_cxx[.hpp | .cpp]

• Multithreaded Network Server Framework threaded_server[.hpp | .cpp]

iii. Basic Types and Functionality (for Registry, Logging and MT Locks) ncbi_core[.h | .c],
ncbi_types[.h]

iv. Portable TCP/IP Socket Interface ncbi_socket[.h | .c]

v. Connections and CONNECTORs

• Open and Manage Connections to an Abstract I/O ncbi_connection[.h | .c]

• Implement CONNECTOR for a ...

• Abstract I/O ncbi_connector[.h | .c]

• Network Socket ncbi_socket_connector[.h | .c]

• FILE Stream ncbi_file_connector[.h | .c]

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_conn_stream.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_conn_stream.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_conn_streambuf.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_conn_streambuf.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/email_diag_handler.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/email_diag_handler.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_core_cxx.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/threaded_server.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/threaded_server.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_core.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_types.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_socket.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connection.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_connection.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_connector.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_socket_connector.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_file_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_file_connector.c

C++ Toolkit Book The Connection Library

9-2

• HTTP-based Network Connection ncbi_http_connector[.h | .c]

• Named NCBI Service ncbi_service_connector[.h | .c]

• In-memory CONNECTOR ncbi_memory_connector[.h | .c]

vi. Servers and Services

• NCBI Server Meta-Address Info ncbi_server_info[.h | p.h | .c]

• Resolve NCBI Service Name to the Server Meta-Address ncbi_service[.h | p.h | .c]

• Resolve NCBI Service Name to the Server Meta-Address using NCBI Network
Dispatcher (DISPD) ncbi_service[p_dispd.h | _dispd.c]

• Resolve NCBI Service Name to the Server Meta-Address using NCBI Load-Balancing
Service Mapper (LBSM) ncbi_service[p_lbsmd.h | _lbsmd.c | _lbsmd_stub.c]

• NCBI LBSM client-server data exchange API ncbi_lbsm[.h | .c]

• Implementation of LBSM Using SYSV IPC (shared memory and semaphores)
ncbi_lbsm_ipc[.h | .c]

vii. Memory Management

• Memory-Resident FIFO Storage Area ncbi_buffer[.h | .c]

• Simple Heap Manager With Primitive Garbage Collection ncbi_heapmgr[.h | .c]

viii. Connection Library Utilities

• Connection Utilities ncbi_connutil[.h | .c]

• Send Mail (in accordance with RFC821 [protocol] and RFC822 [headers])
ncbi_sendmail[.h | .c]

• Auxiliary (optional) Code for ncbi_core.[ch] ncbi_util[.h | .c]

• Non-ANSI, Widely Used Functions ncbi_ansi_ext[.h | .c]

daemons [src/connect/daemons]

• LBSMD

• DISPD

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_http_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_http_connector.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_service_connector.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_memory_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_memory_connector.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_server_info.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_server_infop.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_server_info.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_servicep.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_service.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_servicep_dispd.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_service_dispd.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_servicep_lbsmd.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_service_lbsmd.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_service_lbsmd_stub.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_lbsm.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_lbsm.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_lbsm_ipc.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_lbsm_ipc.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_buffer.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_buffer.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_heapmgr.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_heapmgr.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connutil.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_connutil.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_sendmail.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_sendmail.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_util.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_util.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_ansi_ext.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_ansi_ext.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/daemons

C++ Toolkit Book The Connection Library

9-3

• Firewall Daemon

Test Cases [src/connect/test]
Note: Due to security issues, not all links in the public version of this file could be accessible by

outside NCBI users. Unrestricted version of this document is available to inside NCBI users at:
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/libs/conn.html.

Contents

• Overview

• Connections: notion of connection; different types of connections that library provides;
programming API.

• Socket Connector

• File Connector

• HTTP Connector

• Service Connector

• Debugging Tools and Troubleshooting

• C++ Connection Streams built on top of connection objects.

• Service mapping API: description of service name resolution API.

• Threaded Server Support

Overview
NCBI C++ platform-independent connection library (src/connect and include/connect) consists of
2 parts:

1. Lower-level library written in C (also used as a replacement of existing connection library
in the NCBI C Toolkit);

2. Upper-level library written in C++ and using C++ streams.

Functionality of the library includes:

• SOCK interface (sockets), which works interchangeable on most UNIX flavors, MS-

Windows, and Mac;

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/test
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/libs/conn.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect

C++ Toolkit Book The Connection Library

9-4

• SERV interface, which provides mapping of symbolic service names into server addresses;

• CONN interface, which allows to create a connection, the special object capable to do read,

write etc. I/O operations;

• C++ streams built on top of CONN interface.

Note: The most lower-level SOCK interface is not covered in this document. Well-commented

API can be found in connect/ncbi_socket.h.

Connections
There are 3 simple types of connections: socket, file and http; and one hybrid type, service con-
nection.

A connection is created with a call to CONN_Create(), declared in connect/ncbi_connection.
h, and returned by a pointer to CONN passed as a second argument:

CONN conn; /* connection handle */
EIO_Status status = CONN_Create(connector, &conn);

The first argument of this function is a handle of a so-called connector, a special object
implementing functionality of the connection being built. Above, for each type of connection there
is a special connector in the library. For each connector, one or more "constructors" defined, each
returning the connector's handle. Connectors' constructors are defined in individual header files,
like connect/ncbi_socket_connector.h, connect/ncbi_http_connector.h, connect/
ncbi_service_connector.h etc. CONN_Create()resets all timeouts to the default value
CONN_DEFAULT_TIMEOUT.

After successful creation with CONN_Create(), the following calls from CONN API connect/

ncbi_connection.h become available. All calls (except CONN_GetTimeout() and CONN_Get-
Type()) return I/O completion status of type EIO_Status. Normal completion has code eIO_Suc-
cess.

• CONN_Read (CONN conn, void* buf, size_t bufsize, size_t* n_read,
EIO_ReadMethod how); Read or peek data, depending on read method how, up to

bufsize bytes from connection to specified buffer buf, return (via pointer argument

n_read) the number of actually read bytes. The last argument how can be one of the fol-

lowing:

• eIO_ReadPlain - to read data in a regular way, that is extracting data from the

connection,

• eIO_ReadPeek - to peek data from the connection, i.e. the next read operation will

see the data again,

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Create
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connection.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connection.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_http_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_DEFAULT_TIMEOUT
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connection.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connection.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EIO_Status
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Read
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EIO_ReadMethod

C++ Toolkit Book The Connection Library

9-5

• eIO_ReadPersist - to read exactly (not less than) bufsize bytes or until an error

condition occurs.

Return value other than eIO_Success means trouble. Specifically, return value

eIO_Timeout indicates that the operation could not be completed within the preset

amount of time; but some data may, however, be available in the buffer (e.g. in case of
persistent reading, with eIO_ReadPersist), and this is actually the case for any return

code.

• CONN_Write (CONN conn, const void* buf, size_t bufsize, size_t*
n_written); Write the specified number of bytes bufsize from the buffer buf to the

connection. Return (via n_written) the number of actually written data, and completion

code as a return value.

• CONN_Flush (CONN conn); Flush internal output queue, if this is supported by the cur-

rent connection type.

• CONN_SetTimeout (CONN conn, EIO_Event action, const STimeout* time-
out); Set the timeout on the specified I/O action, eIO_Read, eIO_Write, eIO_Read-
Write, eIO_Open, and eIO_Close. The latter 2 actions are used in a phase of opening

and closing the link, respectively: if connection cannot be established (closed) within the
specified period, eIO_Timeout would result. eIO_Timeout results if reading/writing

could not be completed within specified time range, correspondingly. A timeout can be
passed as the NULL-pointer. This special case denotes an infinite value for that timeout.

Also, a special value CONN_DEFAULT_TIMEOUT may be used for any timeout. This value

specifies the timeout set by default for the current connection type.

• aCONN_GetTimeout (CONN conn, EIO_Event action); Obtain (via return value of

type const STimeout*) timeouts set by >CONN_SetTimeout() routine, or active by default
(i.e. special value CONN_DEFAULT_TIMEOUT). Caution: Returned pointer valid only for the

time the connection handle is valid, i.e. up to a call to CONN_Close().

• CONN_ReInit (CONN conn, CONNECTOR replacement); This function allows to

clear current contents of a connection, and "immerse" a new connector into it. Previous
connector (if any) is closed first (if open), then gets destroyed, and thus must not be refer-
enced again in the program. As a special case, new connector can be the same connector,
which is currently active within the connection. It this case, the connector is not destroyed,
instead it will be effectively re-opened. If connector passed as NULL, then the conn handle

is kept existing but unusable (the old connector closed and destroyed), and can be
CONN_ReInit()ed later. None of the timeouts are touched by this call.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Write
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Flush
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_SetTimeout
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EIO_Event
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_GetTimeout
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=STimeout
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_ReInit

C++ Toolkit Book The Connection Library

9-6

• CONN_Wait (CONN conn, EIO_Event event, const STimeout* timeout);
Suspend the program until connection is ready to perform reading (event =eIO_Read) or

writing (event = eIO_Write), or until timeout (if non-NULL) expired. If timeout is passed

as NULL, then the wait time is infinite.

• CONN_Status (CONN conn, EIO_Event direction); Provide the information

about recent low-level data exchange in the link. Operation direction has to be specified as
either eIO_Read or eIO_Write. The necessity of this call arises from the fact that some-

times return value of a CONN API function does not really tell that the problem has been

detected: suppose, the user peeks data into a 100-byte buffer and gets 10 bytes. Return
status eIO_Success signals that those 10 bytes were found in the connection okay. But

how to know whether the end-of-file condition occurred during last operation? It is where
CONN_Status() comes handy. When inquired about read operation, return value
eIO_Closed denotes that EOF was actually hit while making the peek, and those 10 bytes

are in fact the only data left untaken, no more are expected to come.

• CONN_Close (CONN conn); Close the connection by closing the link (if open), deleting

underlying connector(s) (if any) and the connection itself. Regardless of the return status
(which may indicate certain problems), the connection handle becomes invalid and cannot
be used in the program again.

• CONN_GetType (CONN conn); Return character string (null-terminated), verbally repre-

senting the current connection type, like "HTTP", "SOCKET", "SERVICE/HTTP" etc.
Unknown connection type gets returned as NULL.

• CONN_SetCallback (CONN conn, ECONN_Callback type, const SCONN_Call-
back* new_cb, SCONN_Callback* old_cb); Set user callback function to be called

upon an event specified by callback type. The old callback (if any) gets returned via

passed pointer old_cb (if not NULL). Callback structure SCONN_Callback has the follow-

ing fields: callback function func and void* data. Callback function func should have the

following prototype:

typedef void (*FConnCallback)(CONN conn, ECONN_Callback type, void* data);

When called, both type of callback and data pointer are supplied. The only callback type

defined as of writing of this note is eCONN_OnClose. Callback function is always called

prior to the event to happen, e.g. close callback is called when the connection is about to
close.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Wait
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Status
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Close
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_GetType
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_SetCallback
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SCONN_Callback
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ECONN_Callback

C++ Toolkit Book The Connection Library

9-7

Note: There is no means to "open" a connection: it is done automatically when actually
needed, and in most cases at the first I/O operation. But forming of actual link between source
and destination can be postponed even longer. These details are hidden and made transparent to
the connection's user. The connection is seen as a two-way communication channel, which is
clear to use right away after a call to CONN_Create().

Note: If for some reason CONN_Create() failed to create a connection (return code differs
from eIO_Success), then the connector passed to this function is left intact; that is, its handle

can be used again. Otherwise, if connection is created successfully, the passed connector handle
becomes invalid, and cannot be referenced anywhere else throughout the program (with one,
however, exception: it may be used as a replacing connector in a call to CONN_ReInit() for the

same connection).
Note: There are no public connectors' "destructors". Connector successfully put into connec-

tion is deleted automatically along with that connection by CONN_Close(), or explicitly with a call

to CONN_ReInit() provided that replacing connector is NULL or different from the original.

Socket Connector
Constructors are defined in:

#include <connect/ncbi_socket_connector.h>

Socket connection based on the socket connector brings almost direct access to the SOCK
API. It allows the user to create a peer-to-peer data channel between two programs, which could
be located anywhere on the Internet.

In order to create the socket connection the user has to create a socket connector first, then
pass it to CONN_Create(), as in the following example:

#include <connect/ncbi_socket_connector.h>
#include <connect/ncbi_connection.h>

#define MAX_TRY 3 /* Try to connect this many times before giving up */

unsigned short port = 1234;
CONNECTOR socket_connector = SOCK_CreateConnector("host.foo.com", port, MAX_TRY);

if (!socket_connector)
 fprintf(stderr, "Cannot create SOCKET connector");
else {
 CONN conn;

 if (CONN_Create(socket_connector, &conn) != eIO_Success)
 fprintf(stderr, "CONN_Create failed");
 else {
 /* Connection created ok, use CONN_... function */
 /* to access the network */
 ...

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SOCK_CreateConnector

C++ Toolkit Book The Connection Library

9-8

 CONN_Close(conn);
 }
}

A variant form of this connector's constructor, SOCK_CreateConnectorEx(), takes three

more arguments: a pointer to data (of type void*), data size (bytes) to specify the data to be sent
as soon as the link has been established, and flags, which presently can only be used to turn
debugging information on.

CONN library defines two more constructors, which build SOCKET connectors on top of exist-

ing SOCK objects: SOCK_CreateConnectorOnTop() and SOCK_CreateConnectorOnTopEx(),
the description of which is intentionally omitted here as SOCK is not discussed either. Please
refer to description in the Tookit code.

File Connector
Constructors defined in:

#include <connect/ncbi_file_connector.h>

CONNECTOR file_connector = FILE_CreateConnector("InFile", "OutFile");

This connector could be used for both reading and writing files, when input goes from one file,
and output goes to another file. (This differs from normal file I/O when a single handle is used to
access only one file, but rather resembles data exchange via socket.)

Extended variant of this connector's constructor, FILE_CreateConnectorEx() takes an addi-
tional argument, pointer to a structure of type SFileConnAttr describing file connector attributes,
like initial read position to start from in the input file, open mode for the output file (append
eFCM_Append, truncate eFCM_Truncate, or seek eFCM_Seek to start writing at a specified file

position), and the position in the output file, which is used in seek open mode. Attribute pointer
passed as NULL is equivalent to a call to FILE_CreateConnector(), which reads from the very

beginning of the input file, and entirely overwrites the output file (if any) implicitly using
eFCM_Truncate.

HTTP Connector
Constructors defined in:

#include <connect/ncbi_http_connector.h>

The simplest form of this connector's constructor takes 3 parameters:

extern CONNECTOR HTTP_CreateConnector
(const SConnNetInfo* info,
const char* user_header,
THCC_Flags flags);

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SOCK_CreateConnectorEx
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SOCK_CreateConnectorOnTop
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SOCK_CreateConnectorOnTopEx
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_file_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=FILE_CreateConnector
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=FILE_CreateConnectorEx
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SFileConnAttr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EFileConnMode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_http_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=HTTP_CreateConnector
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SConnNetInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=THCC_Flags

C++ Toolkit Book The Connection Library

9-9

a pointer to network information structure (can be NULL), a pointer to a custom HTTP tag-

value(s) so called user-header, and bitmask of various flags. The user-header has to be in the
form "HTTP-Tag: Tag-value\r\n", or even multiple tag-values delimited and terminated by

"\r\n". If specified, user_header parameter overrides the corresponding field in info.

Network information structure (from connect/ncbi_connutil.h) defines parameters of the con-
nection point, where the HTTP server is running. Note: Not all parameters of the structure
depicted below apply to this connector.

/* Network connection related configurable info struct
*/
typedef struct {
 char client_host[64]; /* effective client host-
name */
 char host[64]; /* host to connect to */
 unsigned short port; /* port to connect to, host
byte order */
 char path[1024]; /* service: path(e.g. to a
CGI script) */
 char args[1024]; /* service: args(e.g. for a
CGI script) */
 EReqMethod req_method; /* method to use in the
request */
 STimeout timeout; /* I/O timeout */
 unsigned int max_try; /* max. # of attempts to
establish conn */
 char http_proxy_host[64]; /* hostname of HTTP proxy
server */
 unsigned short http_proxy_port; /* port # of HTTP proxy
server */
 char proxy_host[64]; /* host of CERN-like fire-
wall proxy srv */
 EDebugPrintout debug_printout; /* printout some debug info
*/
 int/*bool*/ stateless; /* to connect in HTTP-like
fashion only */
 int/*bool*/ firewall; /* to use firewall/relay in
connects */
 int/*bool*/ lb_disable; /* to disable local load-
balancing */ const
 char* http_user_header; /* user header to add to
HTTP request */

 /* the following field(s) are for the internal use only! */
 int/*bool*/ http_proxy_adjusted;
} SConnNetInfo;

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connutil.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EReqMethod
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=STimeout
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EDebugPrintout
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SConnNetInfo

C++ Toolkit Book The Connection Library

9-10

Caution: Unlike other "static fields" of this structure, http_user_header (if non-NULL) is

assumed to be dynamically allocated on the heap (via a call to malloc, calloc or related function,
like strdup).

While the user can create and fill out this structure via field-by-field assign-
ments, there is however a better, easier, much safer and configurable way (and
interface defined in connect/ncbi_connutil.h) to deal with this structure:

• ConnNetInfo_Create (const char* service) Create and return

a pointer to new SConnNetInfo structure, filled with parameters specific
either for a named service or by default if service specified as NULL
(most likely the case for ordinary HTTP connections). Parameters for the
structure are taken from (in order of precedence):

• Environment variables of the form <service>_CONN_<name>,

where name is the name of the field;

• Service-specific registry section (see below, Note about the reg-
istry) named [service] using the key CONN_<name>;

• Environment variable of the form CONN_<name>;

• Registry section named [CONN] using name as a key;

• And finally, default value is applied, if none of the above resulted in
a successful match.

Search for the keys in both environment and registry is not case-sensitive;
but the values of the keys are case-sensitive (except for enumerated
types and boolean values, which can be of any - even mixed - case).
Boolean fields accept 1, "YES" and "TRUE" as true values, all other val-
ues are treated as false. In addition to a floating point number treated as a
number of seconds, timeout can accept (case-insensitively) keyword

"INFINITE". Note: The first 2 steps in the above sequence are skipped if
service name is passed as NULL. Caution: The library does not provide

reasonable default values for path and args when the structure is used

for HTTP connectors.

• ConnNetInfo_Destroy (SConnNetInfo* info) Delete and free the

info structure via passed pointer (note that the HTTP user header
http_user_header is freed, too).

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connutil.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ConnNetInfo_Create
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ConnNetInfo_Destroy

C++ Toolkit Book The Connection Library

9-11

• ConnNetInfo_SetUserHeader (SConnNetInfo* info, const
char* new_user_header) Set the new HTTP user header (freeing the

previous one if any) by cloning the passed string argument and storing it
in http_user_header field. New_user_header passed as NULL
resets the field.

• ConnNetInfo_Clone (SConnNetInfo* info) Create and return

pointer to a new SConnNetInfo structure, which is an exact copy of the
passed structure. This function is aware of dynamic nature of the HTTP
user header field.

Note about the registry. The registry used by connect library is separate from CNcbiReg-
istry class. To learn more about the difference, and how to use both objects together in a single
program, please follow this link.

The following fields of SConnNetInfo pertain to the HTTP connector: client_host, host,

port, path, args, req_method (can be one of "GET", "POST", and "ANY"), timeout,

max_try (analog of maximal try parameter for the socket connector), http_proxy_host,

http_proxy_port, debug_printout (values are "NONE" to disable any trace printout of the

connection data, "SOME" to enable printing of SConnNetInfo structure before each connection
attempt, and "DATA" to print both headers and data of the HTTP packets in addition to dumps of
SConnNetInfo structures). Values of other fields are ignored.

Argument flags in the HTTP connector's constructor is a bitwise OR of the following values:

• fHCC_AutoReconnect Allow multiple request/reply HTTP transactions. (Otherwise by

default, only one request/reply is allowed.)

• fHCC_SureFlush Always flush a request (maybe solely consisting of HTTP header with

no body at all) down to the HTTP server before preforming any read or close operations.

• fHCC_KeepHeader By default, HTTP connection sorts out the HTTP header and parses

HTTP errors (if any). Thus, normally reading from the connection returns data from the
HTTP body only. The flag disables this feature, and the HTTP header is not parsed but
instead passed 'as is' to the application on a call to CONN_Read().

• fHCC_UrlDecodeInput Decode input data passed in HTTP body from the HTTP server.

• fHCC_UrlEncodeOutput Encode output data passed in HTTP body to the HTTP server.

• fHCC_UrlCodec Perform both encoding and encoding (fHCC_UrlDecodeInput |
fHCC_UrlEncodeOutput).

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ConnNetInfo_SetUserHeader
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ConnNetInfo_Clone
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EHCC_Flags

C++ Toolkit Book The Connection Library

9-12

• fHCC_UrlEncodeArgs Encode URL if it contains special characters like '+'. By default,

the arguments are passed 'as is' (exactly as taken from SConnNetInfo).

• fHCC_DropUnread Drop unread data, which might exist in connection, before making

another request/reply HTTP shot. Normally, the connection first tries to read out the data
from the HTTP server entirely, until EOF, and store them in the internal buffer even if either

application did not requested the data for reading, or the data were read only partially, so
that the next read operation will see the data.

• fHCC_NoUpread Do not attempt to empty incoming data channel into a temporary inter-

mediate buffer while writing to the outgoing data channel. By default, writing always makes
checks that incoming data are available for reading, and those data are extracted and
stored in buffer. This approach allows to avoid I/O deadlock, when writing creates a back-
ward stream of data, which if unread blocks the connection entirely.

The HTTP connection will be established using the following URL - http://host:port/path?args
Note that path has to have a leading slash "/" as the very first character, that is, only "http://"

and "?" are added by the connector, all other characters appear exactly as specified (but maybe
encoded with fHCC_UrlEncodeArgs). The question mark does not appear if the URL has no

arguments.
More elaborate form of the HTTP connector's constructor has the following prototype:

typedef int/*bool*/ (*FHttpParseHTTPHeader)
(const char* http_header,
void* adjust_ data,
int/*bool*/ server_error);

typedef int/*bool*/ (*FHttpAdjustInfo)
(SConnNetInfo* info,
void* adjust_data,
unsigned int n_failed);

typedef void (*FHttpAdjustCleanup)
(void* adjust_data
);

extern CONNECTOR HTTP_CreateConnectorEx
(const SConnNetInfo* net_info,
THCC_Flags flags,
FHttpParseHTTPHeader parse_http_hdr, /* may be NULL, then no addtl.parsing */
FHttpAdjustInfo adjust_info, /* may be NULL, then no adjustments */
void* adjust_data, /* for "adjust_info"& "adjust_cleanup"*/
FHttpAdjustCleanup adjust_cleanup /* may be NULL */);

This form is assumed to be rarely used by the users directly, but it provides rich access to the
internal management of HTTP connections.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=HTTP_CreateConnectorEx

C++ Toolkit Book The Connection Library

9-13

The first two arguments are identical to their counterparts in the arguments number one and
three of HTTP_CreateConnector(). HTTP user header field (if any) is taken directly from
http_user_header field of SConnNetInfo, pointer to which is passed as net_info (which in

turn can be passed as NULL meaning to use the environment, registry and defaults as described

above).
The third parameter specifies a callback to be activated to parse the HTTP reply header

(passed as a single string, with CR-LF - carriage return/line feed - characters incorporated to
divide header lines). This callback also gets some custom data adjust_data as supplied in the

fifth argument of the connector's constructor, and a boolean value true if parsed response code
from the server was not okay. The callback can return false (zero), which is considered the same
way as having an error from the HTTP server. However, pre-parsed error condition (passed in
server_error) retains even if the return value of the callback is true, that is the callback is

unable to "fix" the error code from the server. This callback is not called iffHCC_KeepHeader is

set in flags.
The forth argument is a callback, which gets control when an attempt to connect to the HTTP

server has failed. On entry, this callback has current SConnNetInfo, which is requested to be
adjusted in a faith that the connection to the HTTP server will finally succeed. That is, the callback
can change anything in the info structure, and the modified structure will be kept for all further
connection attempts, until changed by this callback again. The number (starting from 1) of suc-
cessive failed attempts is given in the last callback's argument. The callback return value true
(non-zero) means successful adjustment. Return value false (zero) stops connection attempts
and returns an error to the application.

When connector is being destroyed, the custom object adjust_data can be destroyed in

the callback, specified as the last argument of the extended constructor.
Note: Any callback may be specified as NULL, which means that no action is foreseen by the

application, and default behavior occurs.

Service Connector
Constructors defined in:

#include <connect/ncbi_service_connector.h>

This is the most complex connector in the library. It can initiate data exchange between an
application and a named NCBI service, and data link can be either wrapped in HTTP or be just a
byte-stream (like in a socket). In fact, this connector sits on top of either HTTP or SOCKET con-
nectors.

The library provides two forms of connector's constructor:

SERVICE_CreateConnector(const char* service_name);

SERVICE_CreateConnectorEx
(const char* service_name, /* The registered name of an NCBI service */

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=HTTP_CreateConnector
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERVICE_CreateConnector
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERVICE_CreateConnector
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERVICE_CreateConnectorEx
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERVICE_CreateConnectorEx

C++ Toolkit Book The Connection Library

9-14

TSERV_Type types, /* Accepted server types, bitmask */
const SConnNetInfo* net_info, /* Connection parameters */
const SSERVICE_Extra* params /* Addtl set of parameters, may be NULL */);

The first form is equivalent to SERVICE_CreateConnectorEx(service_name, fSERV_Any, 0,
0).A named NCBI service is a CGI program or standalone server (can be one of two supported
types), which runs at the NCBI site, and accessible by the outside world. Special dispatcher
(which runs on the NCBI Web-servers) allows automatic switching to the appropriate server with-
out having the client to know a priori the connection point. That is, the client just uses the main
entry gate of the NCBI Web (usually, www.ncbi.nlm.nih.gov) with a request to have a service
"service_name", and depending on the service availability, the request will be either honored (by
switching and routing the client to the machine actually running the server: clicking on the previ-
ous link should bring you to a page containing "name=value" message, obtained from the special
bouncing service as a result of the form submission), rejected, or declined. To the client, the
entire process of dispatching is seen as completely transparent (for example, try clicking several
times on either of the latter two links and see that the error replies are actually sent from different
hosts, so is the successful processing of the first link done by one of several hosts running the
bouncing service).

Dispatching protocol per se is implemented on top of the HTTP protocol, and is parsed by a
CGI program dispd.cgi (or another dispatching CGI), which is available on the NCBI Web.

On every server running the named services, another program, called load-balancing
daemon (lbsmd), is executing. This daemon supports having the same service running on

different machines, and allows to choose among them the one machine, which is less
loaded. When dispd.cgi receives a request for a named service, it first consults the load-

balancing table, which is broadcasted by each load-balancing daemon, and re-assembled in
a network-wide form on each server. When the corresponding server is found, the client
request can be passed, or a dedicated connection to the server can be established. The
dispatching is made such a way that it can be also used directly from the Internet browsers.

The named service facility uses the following distinction of server types:

• HTTP servers, which are usually CGI programs:

• HTTP_GET servers are those accepting requests only using HTTP GET method.

• HTTP_POST servers are those accepting requests only using HTTP POST method.

• HTTP servers are those accepting both of either GET or POST methods.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=TSERV_Type
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SConnNetInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SSERVICE_Extra
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/Service/dispd.cgi?service=io_bounce
http://www.ncbi.nlm.nih.gov/Service/dispd.cgi?service=blahblah
http://www.ncbi.nlm.nih.gov/Service/dispd.cgi?service=TaxServer
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/daemons/dispd_cgi.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/daemons/lbsmd.c

C++ Toolkit Book The Connection Library

9-15

• NCBID servers are those run by a special CGI engine, called ncbid.cgi, a configurable

program (now integrated within dispd.cgi itself), which can convert byte-stream output

from another program (server) started by the request from dispatcher to an HTTP-
compliant reply (that is a packet having both HTTP header and body, and suitable e.g. for
Web-browsers).

• STANDALONE servers, like mailing daemons, are those listening on their own onto the
network for incoming connections.

• FIREWALL servers are the special pseudo-servers, not existing in reality, but are created
and used internally by the dispatcher software to indicate that only a firewall connection
mode can be used to access the requested service.

• DNS servers are beyond the scope of this document cause they are to declare domain
names, which used internally at NCBI site to help load-balancing based DNS lookup (see
here).

Formal description of these types is given in connect/ncbi_server_info.h:

/* Server types
*/
typedef enum {
 fSERV_Ncbid = 0x1,
 fSERV_Standalone = 0x2,
 fSERV_HttpGet = 0x4,
 fSERV_HttpPost = 0x8,
 fSERV_Http = fSERV_HttpGet | fSERV_HttpPost,
 fSERV_Firewall = 0x10,
 fSERV_Dns = 0x20
} ESERV_Type;

#define fSERV_Any 0
#define fSERV_StatelessOnly 0x80
typedef unsigned TSERV_Type; /* bit-wise OR of "ESERV_Type" flags */

The bitwise OR of the ESERV_Type flags can be used to restrict the search for the servers,
matching the requested service name. These flags passed as argument types are used by the

dispatcher when figuring out, which server is acceptable for the client. Special value 0 (or, better
fSERV_Any) states no such preference whatsoever. Special bit-value fSERV_StatelessOnly
set together with other bits or just alone specifies that the servers should be of stateless (HTTP-
alike) type only, and it is the client which is responsible for keeping track of the logical sequence
of transactions.

The following code fragment establishes service connection to the named service
"io_bounce", using only stateless servers:

CONNECTOR c;
CONN conn;

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/daemons/dispd_cgi.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/daemons/mghbn.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_server_info.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ESERV_Type

C++ Toolkit Book The Connection Library

9-16

if (!(c = SERVICE_CreateConnectorEx("io_bounce", fSERV_StatelessOnly, 0, 0)))
 fprintf(stderr, "No such service available");
else if (CONN_Create(c, &conn) != eIO_Success)
 fprintf(stderr, "Failed to create connection");
else {
 static const char buffer[] = "Data to pass to the server";
 size_t n_written;

 CONN_Write(conn, buffer, sizeof(buffer) - 1, &n_written);
 ...
}

The real type of the data channel can be obtained via call to >CONN_GetType(conn).
Note: In the above example the client has no assumption how the data actually passed to the

server. The server could be of any type in principle, even a standalone server, which was used in
the request/reply mode of one-shot transactions. If necessary, such wrapping would have been
made by the dispatching facility as well.

The last but one parameter of the extended constructor is the network info, described in sec-
tion devoted to HTTP connector. Service connector uses all fields of this structure, except for
http_user_header, and the following assumptions apply:

• path specifies the dispatcher program (defaulted to dispd.cgi);

• args specifies parameters for the requested service, this is service-specific, no defaults;

• stateless is used to set fSERV_StatelessOnly flag in the server type bitmask, if it

was not set there already (convenient to modify the dispatching using environment and/or
registry, if the flag is not set; yet allows to hardcode the flag at compile-time by setting it in
constructor's types argument explicitly);

• lb_disable set to true (non-zero) means to always use remote dispatcher (via network

connection) even if locally running load-balancing daemon is available (by default, local
load-balancing deamon consulted first to resolve the name of the service);

• firewall set to true (non-zero) disables the direct connection to the service. Instead,

either a connection to a proxy firewall daemon (fwdaemon), running at the NCBI site, is
initiated to pass the data in stream mode, or data get relayed via dispatcher if stateless
server is used;

• http_user_header ignored (asserted to be NULL in debug compilation mode).

As with HTTP connector, if network information structure is specified as NULL, default values

are obtained as described above, as with the call to ConnNetInfo_Create(service_name).

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/daemons/fwdaemon.c

C++ Toolkit Book The Connection Library

9-17

Normally the last parameter of SERVICE_CreateConnectorEx() is left NULL, which sets all

additional parameters to their default values. Among others, this includes default procedure of
choosing an appropriate server when the connector is looking for a mapping of the service name
into a server address. To see how this parameter can be used to change the mapping procedure
please refer to a later section.

Library provides additional interface to named service mapper, which can be found in con-
nect/ncbi_service.h.

Note: Requesting fSERV_Firewall in the types parameter effectively selects firewall

mode regardless of the network parameters, loaded via SConnNetInfo structure.

Debugging Tools and Troubleshooting
Each connector (except for FILE connector) provides means to view data flow in the connection.
In case of SOCKET connector debugging information can be turned on by the last argument in
SOCK_CreateConnectorEx(), or by using global routine SOCK_SetDataLoggingAPI()
(declared in connect/ncbi_socket.h) Note: In the latter case every socket (including sockets
implicitly used by other connectors like HTTP or SERVICE) will generate debug printouts.

In case of HTTP or SERVICE connectors, which employ SConnNetInfo, debugging can be
activated directly from the environment by setting CONN_DEBUG_PRINTOUT to TRUE or SOME.

Similarly, a registry key DEBUG_PRINTOUT with a value of either TRUE or SOME found in the

section [CONN] would have the same effect: it turns on only logging of connection parameters
each time the link gets established. When set to ALL, this variable (or key) also turns on debug-
ging output on all underlying sockets ever created during the life of the connection. Value FALSE
(default) turns debugging printouts off. Moreover, for SERVICE connector the debugging output
option can be set on a per-service basis using <service>_CONN_DEBUG_PRINTOUT environ-

ment variables, or individual registry sections [<service>] and key CONN_DEBUG_PRINTOUT in
them. Note: Debugging printouts can only be controlled in a described way via environment or
registry if and only if SConnNetInfo is always created with the use of convenience routines.

Debugging output is always sent to the same destination, CORE log file, which is a C object
shared between both C and C++ Toolkits. As said, the logger is an abstract object, i.e. it is empty
and cannot produce any output if not tuned accordingly. The library defines few calls gathered in
connect/ncbi_util.h which allow the logger to go via FILE file pointer, like stderr:

CORE_SetLOGFILE() as e.g. shown in the example test_ncbi_service_connector.c, or to be a
regular file on disk. Moreover, both Toolkits define interfaces to deal with registries, loggers and
locks that use native objects of each toolkit and use them as replacements for corresponding
abstract layer's objects.

There is a common problem reported several times and actually concerning network configu-
ration rather than misbehavior of the library. If a test program, which connects to a named NCBI
service, is not getting anything back from the NCBI site, one first has to check whether there is a
transparent proxying/caching in between the host and NCBI. As the service dispatching is imple-
mented on top of ordinary HTTP protocol, the transparent proxying may latch unsuccessful ser-
vice searches (which could happen and may not indicate a real problem) as error responses from

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SOCK_CreateConnectorEx
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SOCK_SetDataLoggingAPI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SConnNetInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_util.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOGFILE
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/test/test_ncbi_service_connector.c

C++ Toolkit Book The Connection Library

9-18

the NCBI server. Afterwards, instead of actually connecting to NCBI, the proxy returns those
cached errors (or sometimes just an empty document), which breaks the service dispatcher code.
In most cases there are configurable ways to exclude certain URLs from proxying and caching,
and they are subject for discussion with a local network administrator.

There is another tip: Make sure that all custom HTTP header tags (as passed, for example, in
SConnNetInfo::user_header field) do have "\r\n" as tag separators (including the last tag). Many
proxy servers (including transparent proxies, which usually the user is not even aware of) are
known to be sensitive to that each and every HTTP tag is closed by "\r\n" (and not by a single "\n"
character). Otherwise the HTTP packet would be treated as lame and gets discarded.

C++ Connection Streams
Using connections and connectors (via the entirely procedural approach) in C++ programs
overkills the power of the language. Therefore, we provide C++ users with the stream classes, all
derived from standard iostream class, and as a result, which can be used with all famous stream
I/O operators, manipulators etc.

The declarations of the stream's constructors can be found in connect/ncbi_conn_stream.
hpp. We tried to keep the same number and order of constructor's parameters, as they appear in
the corresponding connector's constructors in C.

The code below is a C++-style example from the previous section devoted to the service
connector:

#include <connect/ncbi_conn_stream.hpp>

 try {
 CConn_HttpStream
 ios("io_bounce", fSERV_StatelessOnly, 0); ios << "Data to be passed to the
server";
 } STD_CATCH_ALL("Connection problem");

 ...

Note: Stream constructor may throw an exception if, for instance, the requested service is not
found, or other kind of problem arose. To see the actual reason, we used standard toolkit macro
STD_CATCH_ALL(), which prints the message and problem description into the log file (cerr, by

default).

Service mapping API
The API defined in connect/ncbi_service.h maps required sevice name into server address. Inter-
nally, the mapping is done either directly or indirectly by means of load-balancing daemon, run-
ning at NCBI site. For the client, the mapping is seen as a reading from an iterator created by a
call to SERV_Open() like in the following fragment (for more examples please refer to the test
program test_ncbi_disp.c):

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_conn_stream.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_conn_stream.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CConn_HttpStream
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=STD_CATCH_ALL
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/test/test_ncbi_disp.c

C++ Toolkit Book The Connection Library

9-19

#include <connect/ncbi_service.h>

 SERV_ITER iter = SERV_Open("my_service", fSERV_Any, SERV_ANYHOST, 0);
 int n = 0;

 if (iter != 0) {
 SSERV_Info* info = SERV_GetNextInfo(iter);
 while (info != 0) {
 char* str = SERV_WriteInfo(info);

 printf("Server = `%s'\n", str);
 free(str);
 n++;
 }
 SERV_Close(iter);
 }
 if (!iter || !n)
 printf("Service not found\n");

Note: Non-NULL iterator returned from SERV_Open()does not yet guarantee that the service

is available, whereas NULL iterator definitely means that the service does not exist.

As shown in the above example, loop over reading from the iterator results in the sequence of
successive structures (none of which is to be freed by the program!) that along with conversion
functions SERV_ReadInfo(), SERV_WriteInfo() and others are defined in connect/
ncbi_server_info.h. Structure SSERV_Info describes a server that implements requested service.
NULL gets returned when no more servers (if any) could be found. The iterator returns servers in

the order the load-balancing algorithm arrange them. Each server has a rating, and the larger the
rating the better the chance for the server to be chosen first.

Note: Servers returned from the iterator are all of the requested type, with only one excep-
tion: they can include servers of type fSERV_Firewall even if this type was not explicitly

requested. So the application must sort these servers out, if not interested in them. But if
fSERV_Firewall is set in the types, then the search is done for whichever else types

requested, and with the assumption that the client has chosen firewall connection mode, regard-
less of network parameters supplied in SConnNetInfo, or read out from either registry or envi-
ronment.

Note: Search for servers of type fSERV_Dns is not inclusive with fSERV_Any specified as

server type. That is, servers of type DNS are only returned if specifically requested in the server
mask at the time the iterator was opened.

There is a simplified version of SERV_Open(), called SERV_OpenSimple(), as well as an
advanced version, called SERV_OpenEx(). The former takes only one argument, the service
name. The latter takes two more arguments, which describe the set of servers not to be seen
from the iterator (excluded server descriptors).

There is also an advanced version of SERV_GetNextInfo(), called SERV_GetNextInfoEx(),
which via its second argument allows to get many host parameters, among which is a so called
host environment, a "\0"-terminated string, consisting of set of lines separated by "\n" characters,

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_ITER
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_Open
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ESERV_Type
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_ANYHOST
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SSERV_Info
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_GetNextInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_WriteInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_Close
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_ReadInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_WriteInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_server_info.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_server_info.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SSERV_Info
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_OpenSimple
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_OpenEx
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_GetNextInfoEx

C++ Toolkit Book The Connection Library

9-20

and specified in the configuration file of load-balancing daemon of the host, where the returned
server was found. The typical line within the set has a form "name=value" and resembles very
much the shell environment, where its name comes from. The host environment could be very
handy for passing additional information to applications if the host has some limitations or
requires special handling should the server be selected and used on this host. Example below
should give an idea. At the time of writing, getting the host information is only implemented when
the service is obtained via direct access to the load-balancing daemon. Unlike returned server
descriptors, the returned host information handle is not a constant object and must be explicitly
freed by the application when no longer needed. All operations (getter methods) that are defined
on the host information handle are declared in connect/ncbi_host_info.h. If the server descriptor
was obtained using dispatching CGI (indirect dispatching), then the host information handle is
always returned as NULL (no host information available).

The back end of the service mapping API is split into 2 independent parts: direct access to
>LBSMD, if the one is both available on the current host and is not disabled by parameter --
>lb_disable at the iterator opening. If LBSMD is either unavailable or disabled, the second

(indirect) part of the back-end API is used, which involves connection to dispatching CGI,
which in turn connects to LBSMD in order to carry out the request. Attempt to use the CGI is

only done, if net_info argument is provided non-NULL in the calls to SERV_Open() or

SERV_OpenEx(). Note: In call to SERV_OpenSimple(), net_info gets created internally

before upcall to SERV_Open() and thus CGI dispatching is likely to happen, unless either
net_info could not be constructed from the environment, or environment varaible

CONN_LB_DISABLE (or service-specific one, or either of corresponding registry keys) is set

to TRUE. Note: In the above conditions, the network service name resolution is also
undertaken if service name could not be resolved (due to service inexistence or other error)
with the use of locally found LBSMD.

The following code example uses both service connector and the service mapping API to
access certain service using an alternate way (other than connector's default) of choosing
appropriate servers. By default, service connector opens an internal service iterator and then
tries to connect to the next server, which SERV_GetNextInfo() returns when given the
iterator. That is, the server with higher rate is tried first. If the user provides a pointer to
structure SSERVICE_Extra as the last parameter of the connector's constructor, then the
user-supplied routine (if any) can be called instead in order to obtain the next server. The
routine is also given a supplemental custom argument data taken from SSERVICE_Extra.

The (intentionally simplified) example below tries to create connector to an imaginary service
"my_service" in restriction that the server has additionally to have a certain (user-specified)
database present. The database name is taken from LBSMD host environment keyed
"my_service_env", the first word of which is assumed to be the name.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_host_info.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_OpenEx

C++ Toolkit Book The Connection Library

9-21

#include <connect/ncbi_service_connector.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>

#define ENV_DB_KEY "my_service_env="

/* This routine gets called when connector is about to be destructed.
*/
static void s_CleanupData(void* data)
{
 free(data); /* we kept database name there */
}

/* This routine gets called on each internal close of the connector
* (which may be followed by a subsequent internal open).
*/
static void s_Reset(void* data)
{
 /* just see that reset happens by printing DB name */
 printf("Connection reset, DB: %s\n", (char*) data);
}

/* 'Iter' is an internal service iterator used by service connector; it must
* remain open.
* 'Data' is what we supplied among extra-parameters in connector's constructor.
*/
static const SSERV_Info* s_GetNextInfo(SERV_ITER iter, void* data)
{
 const char* db_name = (const char*) data;
 size_t len = strlen(db_name);
 SSERV_Info* info;
 HOST_INFO hinfo;
 int reset = 0;

 for (;;) {
 while ((info = SERV_GetNextInfoEx(iter, &hinfo)) != 0) {
 const char* env = HINFO_Environment(hinfo);
 const char* c;
 for (c = env; c; c = strchr(c, '\n')) {
 if (strncmp(c == env ? c : ++c, ENV_DB_KEY,
 sizeof(ENV_DB_KEY)-1) == 0) {
 /* Our keyword has been detected in environment */
 /* for this host */
 c += sizeof(ENV_DB_KEY) - 1;
 while (*c && isspace(*c))
 c++;
 if (strncmp(c, db_name, len) == 0 && !isalnum(c + len)) {
 /* Database match */
 free(hinfo); /* must be freed explicitly */
 return info;
 }

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_ITER
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SSERV_Info
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_GetNextInfoEx
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=HINFO_Environment

C++ Toolkit Book The Connection Library

9-22

 }
 }
 if (hinfo)
 free(hinfo); /* must be freed explicitly */
 }
 if (reset)
 break; /* coming to reset 2 times in a row means no server fit */
 SERV_Reset(iter);
 reset = 1;
 }
 return 0; /* no match found */
}

int main(int argc, char* argv[])
{
 char* db_name = strdup(argv[1]);
 SSERVICE_Extra params;
 CONNECTOR c;
 CONN conn;

 memset(¶ms, 0, sizeof(params));
 params.data = db_name; /* custom data, anything */
 params.reset = s_Reset; /* reset routine, may be NULL */
 params.cleanup = s_CleanupData; /* cleanup routine, may be NULL*/
 params.get_net_info = s_GetNextInfo; /* custom iterator routine */
 if (!(c = SERVICE_CreateConnectorEx("my_service",
 fSERV_Any, NULL, ¶ms))) {
 fprintf(stderr, "Cannot create connector");
 exit(1);
 }

 if (CONN_Create(c, &conn) != eIO_Success) {
 fprintf(stderr, "Cannot create connection");
 exit(1);
 }

 /* Now we can use CONN_Read(), CONN_Write() etc to operate with
 * connection, and we are assured that the connection is made only
 * to the server on such a host which has "db_name" specified in
 * configuration file of LBSMD.
 */

 ...
 CONN_Close(conn);
 /* this also calls cleanup of user data provided in params */

 return 0;
}

Note: No network (indirect) mapping occurs in the above example because net_info is

passed as NULL to the connector's constructor.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_Reset
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SSERVICE_Extra
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONNECTOR
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERVICE_CreateConnectorEx
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Create
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EIO_Status
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Read
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Write
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Close

C++ Toolkit Book The Connection Library

9-23

Threaded Server Support
This library also provides CThreadedServer, an abstract base class for multithreaded network
servers. Here is a demonstration of its use. Note that this class does not support multiplexing
traffic over a single TCP connection; rather, each thread has an individual TCP connection cre-
ated when a client connects to the server's listening port.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CThreadedServer&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/test/test_threaded_server.cpp

